$$E = E^{\circ} - \frac{0.0592}{n} \log_{10} Q$$
 at 25°C

Calculate the potential for the following electrochemical cell at 25°C.

$$Ag \mid Ag^{+}(0.025 \text{ M}) \parallel Cu^{2+}(2.0 \text{ M}) \mid Cu$$

Ans = -0.3539 V

Calculate the potential for the following electrochemical cell at 25°C.

Ans = -1.032 V

Calculate the potential for the following electrochemical cell at 25°C.

Pb | Pb
$$^{2+}$$
(1.0 M) || OH $^{-}$ (0.010 M) | Cd(OH) $_2$ | Cd

Ans = -0.568 V

Calculate the potential for the following electrochemical cell at 25°C.

$$Ag \mid Ag^{+}(0.010 \text{ M}) \parallel OH^{-}(0.20 \text{ M}) \mid Ni(OH)_{2} \mid NiO_{2} \mid Pt$$

Ans = -0.15 V

Calculate the potential for the following electrochemical cell at 25°C.

Pt |
$$O_2(1.5 \text{ atm})$$
, $OH^-(0.010 \text{ M}) \parallel H^+(1.0 \text{ M})$, $H_2(0.50 \text{ atm}) \mid Pt$

$$Ans = -0.514 \text{ V}$$

Calculate the potential for the following electrochemical cell at 25°C.

Pb | PbSO₄ | SO₄²-(1.2 x 10⁻² M)
$$\parallel$$
 H⁺(0.10 M), H₂(1 atm) \parallel Pt

$$Ans = +0.240 \text{ V}$$

Calculate the potential for the following electrochemical cell at 25°C.

Pb | PbSO₄ | H⁺(1.0 M), SO₄²⁻(1.2 x
$$10^{-2}$$
 M) || H⁺(1.0 M), O₂(1.0 atm) || Pt

$$Ans = +1.528 V$$

Calculate the potential for the following electrochemical cell at 25°C.

$$Pb \mid Pb^{2+}(0.10 \text{ M}) \parallel Ag^{+}(1.5 \text{ M}) \mid Ag$$

$$Ans = +0.966 \text{ V}$$