- Calculate the pH to the nearest 0.01 unit of a 0.015 M solution of NH₃. The K_b for NH₃ is 1.8 x 10⁻⁵. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 10.71
- Calculate the pH to the nearest 0.01 unit of a 0.025 M solution of CH_3NH_2 . The K_b for CH_3NH_2 is 2.29 x 10⁻¹¹. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 7.88
- Calculate the pH to the nearest 0.01 unit of a 0.050 M solution of $(CH_3)_3N$. The K_b for $(CH_3)_3N$ is 1.59 x 10⁻¹⁰. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 8.45
- Calculate the pH to the nearest 0.01 unit of a 0.35 M solution of HONH₂. The K_b for HONH₂ is 3.2 x 10⁻⁷. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 10.53

Calculate the pH to the nearest 0.01 unit of a 0.0025 M solution of $C_6H_5NH_2$. The K_b for $C_6H_5NH_2$ is 6.46 x 10⁻⁶. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 10.10

Calculate the pH to the nearest 0.01 unit of a 0.075 M solution of $(CH_3)_2NH$. The K_b for $(CH_3)_2NH$ is 2.0 x 10⁻¹¹. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 8.09

Calculate the pH to the nearest 0.01 unit of a 0.0085 M solution of NH₃. The K_b for NH₃ is 1.8 x 10⁻⁵. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 10.59

Calculate the pH to the nearest 0.01 unit of a 0.15 M solution of C_5H_4N . The K_b for C_5H_4N is 7.59 x 10⁻¹². Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 8.03

Calculate the pH to the nearest 0.01 unit of a 0.0085 M solution of $C_6H_6NH_2$. The K_b for $C_6H_6NH_2$ is 6.46 x 10⁻⁶. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 10.37

Calculate the pH to the nearest 0.01 unit of a 0.090 M solution of HONH₂. The K_b for HONH₂ is 3.2 x 10⁻⁷. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 10.23