Calculate the pH to the nearest 0.01 unit of a solution which is 0.015 M in CH₃COOH and 0.10 M in NaCH₃COO. The K_a for CH₃COOH is 1.8 x 10⁻⁵. Write the Brønsted-Lowery reaction and the equilibrium expression.

Calculate the pH to the nearest 0.01 unit of a solution which is 0.025 M in HCOOH and 0.15 M in NaHCOO. The K_a for HCOOH is 1.76 x 10⁻⁴. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 4.53

ANS = 5.56

Calculate the pH to the nearest 0.01 unit of a solution which is 0.050 M in HNO₂ and 0.10 M in NaNO₂. The K_a for HNO₂ is 4.0 x 10⁻⁴. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 3.70

Calculate the pH to the nearest 0.01 unit of a solution which is 0.35 M in HClO₂ and 0.045 M in NaClO₂. The K_a for HClO₂ is 1.5 x 10⁻⁴. Write the Brønsted-Lowery reaction and the equilibrium expression. ANS = 2.93

Calculate the pH to the nearest 0.01 unit of a solution which is 0.0025 M in C₆H₅COOH and 0.035 M in NaC₆H₅COO. The K_a for C₆H₅COOH is 6.30 x 10⁻⁵. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 5.35

Calculate the pH to the nearest 0.01 unit of a solution which is 0.075 M in HCOOH and 0.15 M in NaHCOO. The K_a for HCOOH is 1.8 x 10⁻⁴. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 4.05

Calculate the pH to the nearest 0.01 unit of a solution which is 0.0085 M in CH₃COOH and 0.090 M in NaCH₃COO. The K_a for CH₃COOH is 1.8 x 10⁻⁵. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 5.77

Calculate the pH to the nearest 0.01 unit of a solution which is 0.15 M in HIO₂ and 0.025 M in NaIO₂. The K_a for HIO₂ is 1.8 x 10⁻⁶. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 4.97

Calculate the pH to the nearest 0.01 unit of a solution which is 0.0085 M in HClO and 0.010 M in NaClO. The K_a for HClO is 3.7 x 10⁻⁸. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 7.50

Calculate the pH to the nearest 0.01 unit of a solution which is 0.090 M in HBrO₂ and 0.025 M in NaBrO₂. The K_a for HBrO₂ is 3.8 x 10⁻⁷. Write the Brønsted-Lowery reaction and the equilibrium expression.

ANS = 5.86