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Abstract:

In Part A it was demonstrated that the most widely used sets of the Dubinin-Polanyi
(DP) isotherm equations may be derived from an isotherm equation that has its basis in
simple quantum mechanical (QM) assumptions.  These derivable isotherms include the
Dubinin-Radushkevich (DR), the Dubinin-Astakhov (DA) and the Dubinin-
Radushkevich-Kaganer (DRK) equations.  Assuming no other energy distributions
than that obtained in the QM treatment, the DR , DA and DRK equations were found
to be valid within a specified error and pressure range.  In this part, heterogeneous
adsorption will be simulated to demonstrate the possibility of a wider range of validity,
especially in the very low pressure ranges.  With a logarithm-normal adsorption energy
distribution of F = 0.25 (corresponding to about 2 kJ mol-1  for liquid N2 adsorption on
ceramics) the range of validity in coverage increases to an amazing factor of about
1010.  Such a distribution also reveals the low pressure equivalence of the Freundlich
isotherm, the QM and the DP formulations.
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1. Introduction:
A short review of the Dubinin-Astakhov (DA) and the quantum mechanical derived
isotherm equations were given in the preceding paper (part A).  The generalized form
of the DA equation is:

(1)

Where P is the pressure and Ps is the vapor pressure over a flat liquid surface.  B and $
are constants.

The Quantum Mechanical (QM) derivation referred to as the chi theory equation is
written as:

(2)

where P and Pc are defined by:

(3)

The function U is the unit step function and Po is vapor pressure over the adsorbate
which could be different than Ps for curved surfaces.  As pointed out in part A, this
difference needs to be accounted for when calculating adsorption in pores.  Defining
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)P = P - Pc and using the symbol 2 for n/nm a the very simple representation of the chi
theory is:

(4)

In part A the chi and DR equations were demonstrated to be mathematically identical
over a large pressure range.  The range of validity corresponded to those pressures
where the DA equation was used the most for measuring porosity.  To do this, only one
Ea was assumed which is that of a homogeneous surface.  There are some cases for
which a deliberate effort has been made to obtain a surface that had one adsorption
energy.  For example, Gammage, et. al. [1], used special treatments of thoria to
accomplish this.  These cases are, however, unusual.  The possibility of two or more
energies of adsorption, or even a distribution of energies, is more likely.  In this part,
Eq. (4) will be modified to account for a logical distributions of energies.

2. Methodology for simulating the Isotherms

One can modify Eq. (4) to take into account a distribution in the adsorption energy, Ea.
The modification would take into account the possibility of several patches (i.e.
"boxes") which differ in Ea.  Differentiating one obtains:

(5)

Differentiating again:

(6)

where ** is the Kronecker delta function.  This equation indicates that, other than the
energy spread due to the QM treatment, there is one and only one adsorption energy,
i.e. there is only one energy for the first adsorbate particle regardless of where on the
surface it adsorbs.  Even a close approximation of such a perfectly homogeneous
surface is a rare exception.  One may break this assumption by replacing the single
delta function with several delta functions or with some reasonable distribution
(differential) function such as the normal distribution.  Use of the normal distribution
in Pc would imply a logarithm-normal distribution in energy as described by Sing and
Gregg [2] which is a reasonable distribution for modeling.  This logarithm-normal
distribution has the advantage that only negative energies are used going from the
liquid state to the adsorbed condition.  The adsorption is thus exothermic from the
liquid state to the adsorbed state or by the convention previously stated, Ea > 0.  The
replacement for Eq. (6) would then be:

(7)

Double integration of Eq. (7) yields a function corresponding to Eq. (4) for the more
realistic case of a spread of surface energies.  Eq. (7) will be used for the energy
distributions in some simulations.  These simulations are intended to illustrate that, given
some reasonable assumptions about the nature of the surface energies, the DA equations
might extend over an extremely wide range.
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In part A, equations were derived that took into account the surface curvature and the
restriction in geometry encountered with cylindrical pores.  These corrections are important
in both the high and low pressure regions.  However, in the low pressure range a simplified
correction can be used:

(8)

where r is the radius of the cylindrical pore and Vm and Am are the molar volume and area of
the adsorbative in the liquid phase.  )Pobs is an experimentally observable quantity similar
to )P defined by using Ps in place of Po in Eq. (3).

3. Calculations Using a Distribution of Adsorption Energies.

What distribution should be used is quite questionable and depends upon the details of the
surface.  Eq. (6) could be used as the basis to construct any arbitrary distribution.  For
illustration, a logarithm-normal distribution of the energy, as mentioned previously as
Eq. (7), will be used in some typical calculations.  It turns out that the choice of the
distribution is only important in the low pressure region of the isotherm.  For the high
pressures the isotherms are minimally sensitive to the choice of the distribution used.  This
was referred to in the original presentation of the theory as the threshold phenomenon [3]. 
In practical terms, the value of pressure above which the distribution problem may be
ignored is from 1 x 10!6 Ps for high energy material, such as ceramics, to about 1 x 10-3 Ps
for very low energy materials such as perfluoropolyethylene.

Eq. (7) is the expression of the postulated logarithm-normal distribution in energy.  For the
low pressure region only <Pc>, r and F need be selected.  With a large r, a double
integration of this equation.  , yielding the integral of the area function in terms of P, will
yield the low pressure isotherm.  In the low pressure range, given a reasonable value of r
the difference between )Pobs and )P is a multiplicative factor as indicated in Eq. (8). 
Thus, even with a reasonable value of r associated with micropores, the functionality of
Eq. (7) may be used with the proviso that the <)Pobs> is that give by Eq. (8).

This simple method does not account for the geometrical restraints of the pores which
become important at the higher pressures.  The simulation of the full isotherm is
accomplished by selecting multiple theoretical P and Pc values according to Eq. (7) and
using the equations

(9)

and

(10)

several times to generate Pobs and Pc,obs.  (Alternatively, the function f' in part A may be
used in order to yield a simulation independent of the selection Pc.)  The corrections for the
geometrical restrictions are then applied to )P in the same fashion as for the homogeneous
surface.  The multiple Pobs plots are then added.
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Figure 1  Comparison of the low DR and
P isotherms.  Dashed lines are for DR and
solid for QM.   "N" are the distributions
and "I" are the isotherms.  F = 0.25 for
<Pc>.

4. Low Pressure Results and the Selection of a FF
The first question is: "What is the appropriate standard deviation, F, to use in Pc to match
the various DA isotherms?"  This can be answered with the simple double integration of
Eq. (7) since only the low pressure region need be considered.  The results indicate the F is
dependent upon k.  Appendix B presents some approximations that may be used.  For the
DR equation, for which k = 2, F = 0.25.  Fig. 1 is an illustration of the match in the low
pressure region for the DR isotherm.  An interesting side-bar is that at a F = 0.50, the
Freundlich isotherm is exactly matched in the low pressure region.  This is illustrated in
Fig. 2.  The Freundlich isotherm constant, rF, in the equation:

(11)

 is related to Ea by (see appendix B):

(12)

The value of rF has no effect the value of
F, but merely shifts the center point of the
adsorption energies according to Eq. (12). 
Thus the Freundlich isotherm is just
another case of the DP sets of isotherms
with k . 1, at least in the low pressure
range.  Notice also that "Henry's law," or
when rF . 1, is therefore also a special case
of the Freundlich isotherm when Ea . RT.

5. High Pressure Results using the DR FF 

Of greater interest is how well a logarithm-
normal distribution matches experimental
results into the higher pressure range.  For
this the full accounting of porosity must be
simulated as described above.  To illustrate
the effect of this distribution simulations
for several values of the pore size
parameters were performed.  For these
simulations the DR distribution, F = 0.25,
was used.  Repeated use of the equation
from part A which takes into account the
effects of curvature (Eqs. (9) and (10)) and
geometrical restriction (Eqs. (43) and (44) of part A) were performed and added according
to this distribution.  The value of F selected corresponds to about 25 % in energy.  For a
typical ceramic material and liquid nitrogen adsorption this implies F . 2 kJ mol!1.  The
plots for values of r of 4 (flat surface,) 10×, 4× and 2×Vm/Am are presented in Fig, 3.  The
range of validity is greatly expanded over that for a single adsorption energy as presented in
part A.  Notice that the log2(P) is over a span of roughly 115 in this figure, corresponding to
a pressure range of a factor of about 5 × 1010.  In part A the valid pressure range varied from
a factor of 100 to 105 depending upon the sample and methodology of determining the slope
and intercept.  Here the linearity begins to break down for such a large range of pressures
with r = 2 as illustrated by the dashed line.  
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Figure 2  Comparison of the Freundlich
isotherm (dashed lines) with the P
generated isotherm with a distribution of F
= 0.50 for <Pc> (solid lines) demonstrating
it is a special case of the DP isotherm.

Figure 3  DR (DRK, r = 4) P generated
isotherms with a log normal distribution of
adsorption energies for various values of r
(pore radius.) F = 0.25 in <Pc>.

In Fig. 3 the DA parameter, and thus F, is
held constant (k = 2.00) and the pore size,
r, is varied.  Similar calculations may be
made holding r constant and varying F to
yield the relationship between F and k. 
Fig. 4 gives the results of several
calculations with r = 4Vm/Am.  The DR
equation, k = 2, is shown to be at F . 0.25
and the Freundlich isotherm, k = 1, at
F . 0.50 as expected.

6. Discussion of Results

In part A the identity of the Dubinin-
Polanyi and the chi theory representations
of the isotherm were demonstrated over a
pressure range that covers most of the
reported literature data.  One could argue
that the homogeneous surface assumed in
part A is unrealistic, thus invalidating the
derivation.  In this part, it is demonstrated the imposition of the heterogeneous surface
assumption and an energy distribution could lead to an even broader range of validity.

If one were to use the above equations and
impose upon the energy a distribution as
specified by Eq. (7) the DR plot becomes
linear over an astoundingly large range in
adsorption.  With the use of a standard
deviation corresponding to about a 25 %
change in energy, the fit to the DR equation is
linear within 2 % over a range of adsorbed
amount of greater than a factor of 1 x 1010! 
Fig. 3 illustrates four examples of such a
comparison of the P equation to the DR
formulation.  Normally, observations for
amount adsorbed is over a span of values that
is a factor of about 10 and occasionally 100. 
Such a large range is rarely recorded.  One
exception is by Hobson [4] who measured the
adsorption of Ar, Kr and Xe on porous silver,
a material that one would expect to be very
heterogeneous.  The linearity for adsorption
of Ar was over a range in adsorbate volume adsorbed of about 103.

Unfortunately, with the inclusion of an energy distribution, the values for the slope and
intercept for the DP plot change from that given in part A.  To calculate these, the energy
distribution on the surface is required.  Thus the importance of the low pressure data, if one
uses the DR formulation, becomes critical.
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Figure 4  The relationship between the DA
parameter, k, and F of the log-normal
distribution of the adsorption energies for
r = 4 in Pc.  The Freundlich isotherm are
just special DP cases.

7. Conclusions

In part A the range of validity of the DP
isotherm for homogeneous surfaces in comparison
to the chi theory is very large.  Even though
the range of validity is that for most
experimentation, the question remained as to
what effect a heterogeneous surface would
have.  This is most critical in the low pressure
region (practically speaking below about 10-4

atm.) for which the DP and Freundlich
(Henry's law being a special case of
Freundlich) isotherms are good descriptions. 
With an assumed logarithm-normal
distribution in adsorption energy with a
spread of only 25 %, the range of validity
extends into the this very low pressure range. 
With this degree of energy distribution the
range of validity extends over a range of
about 1010 in coverage and a factor greater
than of 1010 in pressure.  Given this
information, the conclusion of part A holds
up, i.e. that both the DP description and P
description are validated,  The DP description is strongly supported on theoretical grounds
and the chi theory is strongly supported by extensive experimental data gathered and
analyzed using the DP description.
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Appendix A - Nomenclature - List of symbols

$ = a constant in the Dubinin-Polanyi equations that depends upon the adsorbent.
* = Kronecker delta function
)P / P ! Pc 
, = energy of interaction between adsorbed molecules, J/mol
2 = equivalent monolayer coverage = moles of adsorbent divided by the number of

moles that calculate to cover the surface by exactly a single layer, mol/m2

F = 1 standard deviation
P = the chi function defined in eq.(3)
Pc = the critical chi valued defined by eq.(3)
Pobs = the observed chi function referenced to Ps defined in eq.(10)
Pc,obs = the observed critical chi function referenced to Ps defined in eq.(9)
Am = molar area of adsorbent = NA × a, m2/mol
B = the energy term in the Dubinin-Polanyi equations
b' = defined intercept of a line connecting the DP and chi descriptions
c = lumping of several constants (energy, temperature, etc.) in the chi equation.
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Ea = energy of adsorption (defined as positive)
k = the exponential constant in the Dubinin-Polanyi equations.  For DR k = 2.
nA = the number of moles of adsorbent
nm = the monolayer equivalent moles adsorbed, mol
P = pressure of the adsorbative, Pa
Po = vapor pressure of an adsorbative over a curved surface = the modified vapor

pressure in the Kelvin equation, Pa
Ps = vapor pressure over a liquid with a flat surface, Pa
R = the gas constant
rF = the Freundlich isotherm constant
s' = defined slope of a line connecting the DP and chi descriptions
T = temperature /K
U()P)

= the unit step function at P = Pc
Vm = molar volume of adsorbent, m3/mol

Appendix B - Approximations to equate energy distributions of the DP with PP

Using the generalized form of the DP equation:

(13)

and defining 1/rF as:

(14)

The P representation of the generalized DP equation (for low pressures) is obtained as:

(15)

where c includes several constants (see part A.)  To obtain the energy distribution, this is
differentiated twice to yield:

(16)

This distribution should then match the distribution given in Eq. (7).  To find the maximum
value for Eq. (16), the third derivative is set to zero and the appropriate root selected. 
Matching this to <Pc> Eq. (7) yields:

(17)

since:

(18)

and the curvatures match at the max when:
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Eq. (12) is the approximation from Eq. (17); whereas, the standard deviations of the chi
equation for the various forms of the DP equations may be obtained from Eq. (19).  Fig. 4
yields slightly different answers for some of the DP cases.  This figure was generated from
the full isotherm simulations and not simply from the low pressure considerations.
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